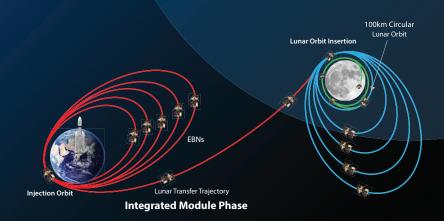


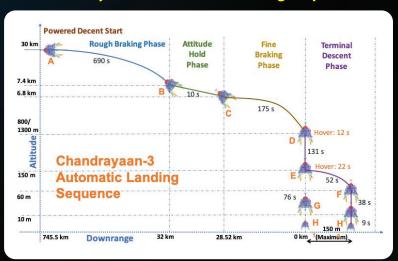
CHANDRAYAAN


The Indian Pride

Chandrayaan-3 mission achieved great heights and demonstrated safe and soft landing on the lunar surface. It also exhibited rover mobility on the Moon, and conducted in-situ experiments on:

- The surface and environment of the Moon at the landing site
- · Thermo-physical properties
- Plasma environment
- Seismicity
- Elemental Composition

Objectives met


Mission

- Demonstrated safe and soft landing on the lunar surface
- Exhibited rover mobility on the Moon
- Conducted in-situ scientific experiments

Science

- Studied the surface and environment of the Moon at the landing site
- Thermo-physical Properties
- Plasma Environment
- Seismicity
- Elemental Composition

Chandrayaan-3 Automatic Landing Sequence

Major Specifications of Propulsion Module

Sl.No	Parameter	Specifications
1.	Lunar Polar Orbit	From 170 x 36500 km to lunar polar orbit
2.	Mission life	Carrying Lander Module & Rover upto \sim 100 x 100 km launch injection. Subsequently, operation of experimental payload for a period of 3 to 6 months.
3.	Structure	Modified version of I-3 K
4.	Dry Mass	448.62 kg (including pressurant)
5.	Propellant Mass	1696.39 kg
6.	Total PM Mass	2145.01 kg
7.	Power Generation	738 W, Summer solistices and with bias
8.	Communication	S-Band Transponder (TTC) – with IDSN
9.	Attitude Sensors	CASS, IRAP, Micro star sensor
10.	Propulsion System	Bi-Propellant Propulsion System (MMH + MON3)

Major Specifications of Lander

Mission life : 1 Lunar day (14 Earth days)
Mass : 1749.86 kg including Rover
Power : 738 W (Winter solstice)

Payloads : 3

Dimensions (mm³): 2000 x 2000 x 1166 Communication: IDSN, Ch-2 Orbiter, Rover Landing site: 69.367621 S, 32.348126 E

Major Specifications of Rover

Mission Life : 1 Lunar day
Mass : 26 kg
Power : 50 W
Payloads : 2

Dimensions (mm3): 917 x 750 x 397

Communication : Lander

Lander Payloads

RAMBHA-LP Langmuir Probe

To measure the near surface plasma (ions and electrons) density and its changes with time.

ChaSTE

Chandra's Surface Thermo-physical Experiment

To carry out the measurements of thermal properties of lunar surface near polar region.

ILSA

Instrument for Lunar Seismic Activity

To measure seismicity around the landing site and delineating the structure of the lunar crust and mantle.

Rover Payloads

APXS

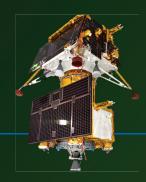
Alpha Particle X-Ray Spectrometer

To derive the chemical composition and infer mineralogical composition to further enhance our understanding of lunar surface.

LIBS

Laser Induced Breakdown Spectroscope

To determine the elemental composition (Mg, Al, Si, K, Ca,Ti, Fe) of lunar soil and rocks around the lunar landing site.


Propulsion Module Payload

SHAPI

Spectro-polarimetry of HAbitable Planet Earth

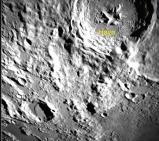
An experimental payload to study the spectro-polarimetric signatures of the habitable planet Earth in the near-infrared (NIR) wavelength range (1-1.7 μ m).

Chandrayaan-3 Trip Recap

Sl.No	Major Events	Date
1.	Chandrayaan-3 Successfully launched into orbit.	July 14, 2023
2.	The first orbit-raising maneuver was successfully performed, the orbit achieved was 173 km X 41762 km.	July 15, 2023
3.	TransLunar Injection, the orbit achieved was 288 km x 369328 km.	August 01, 2023
4.	Chandrayaan-3 was successfully inserted into the lunar orbit. The orbit achieved was 164 km x 18074 km.	August 05, 2023
5.	Lander Module was successfully separated from the Propulsion Module.	August 17, 2023
6.	Chandrayaan-3 soft landing on the Moon surface.	August 23, 2023
7.	Lander successfully performed hop Experiment.	September 03, 2023
8.	Insertion of Propulsion Module from an Moon orbit to Earth Orbit.	November 10, 2023

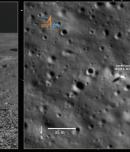
Moon as viewed by Chandrayaan-3 LI-4 Camera

Anaglyph (3D) View of Chandrayaan-3 Vikram Lander on the Moon



Pre and Post Hop Ramp images captured by Lander Imager-1 Camera

Lunar far side area as imaged from the Lander Hazard Detection and Avoidance Camera (LHDAC) onboard Chandrayaan-3 on August 19, 2023


The path retraced by the Chandrayaan-3 Rover on August 27, 2023, as viewed by Navigation Camera onboard Rover.

Vikram as seen by Pragyan on August 30, 2023, 07:35 Hrs. IST

The Crater that the Chandrayaan-3 Rover encountered on August 27, 2023, as seen by the Navigation.

Portion of the Chandrayaan-3's Landing site taken after Landing

Capacity Building and Public Outreach (CBPO)

Indian Space Research Organisation

Department of Space, Government of India Antariksh Bhavan, New BEL Road, Bengaluru-560094, India

www.facebook.com/ISRO/

@isro

@isroofficial5866/featured